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Abstract

Existing work has shown that models of ambiguity aversion as well as expected-
utility models of endogenous discounting share an important prediction about
intertemporal behavior, namely, that agents are averse to positive autocor-
relation in their consumption profile. This paper disentangles the intertem-
poral predictions of ambiguity aversion from those of endogenous discounting
by identifying a form of autocorrelation that is disliked by ambiguity averse
agents only. The analysis is supplemented by two representation theorems.
The first delivers a novel axiomatization of endogenous discounting without
restricting beliefs to be expected utility. The second restricts those beliefs to
be of the maxmin form by leveraging our analysis of correlation and ambiguity
aversion.
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1 Introduction

A recent paper by Kochov [17] considered the implications of ambiguity aversion for
intertemporal behavior. A key lesson is that an ambiguity averse agent would seek
to take different, negatively correlated bets in different time periods. As Figure 1
illustrates, doing so reduces the overall uncertainty faced by the agent as it implies
that a bad outcome in some period t would be compensated by a good outcome in
period t + 1. Combining such behavior, which Kochov [17] called intertemporal
hedging, with a notion of stationarity, which we call path stationarity and preview
momentarily, Kochov [17] axiomatized the following dynamic version of the maxmin
model of Gilboa and Schmeidler [15]:

V (c0, c1, ...) = minp∈P Ep[u(c0) + βu(c1) + β2u(c2)...], (1.1)

where, as usual, P is a set of beliefs over the spate space Ω, representing the agent’s
perception of ambiguity.

A limitation of Kochov’s analysis is that it depends critically on a third assump-
tion which is evident from (1.1), namely, that the ranking of nonstochastic consump-
tion streams be time separable. Without this auxiliary assumption, the behavior in
Figure 1 need no longer be indicative of ambiguity aversion. To see this, consider
the Uzawa [31] and Epstein [7] model of endogenous discounting,1 which relaxes time
separability by allowing the rate of time preference to vary with the consumption
path:

V (c0, c1, ...) = Ep[u(c0) + b(c0)u(c1) + b(c0)b(c1)u(c2)...]. (1.2)

It is known from Epstein [7] that this model, which has found applications in the
theory of optimal growth and the study of small open economies, exhibits intertem-
poral hedging if and only if b is a decreasing function of the consumption level c.
The latter property, known as increasing marginal impatience, is assumed in
virtually all applications of the model as it insures the stability and uniqueness of
steady states.

The main goal of this paper is to disentangle the intertemporal implications of
ambiguity aversion from those of endogenous discounting. We do so by focusing on
a special kind of uncertainty that can arise in a dynamic setting. Imagine an agent
expecting a tax refund. The agent knows the amount to be refunded and plans to

1Uzawa [31] studied endogenous discounting in a setting with no uncertainty. Later, Epstein [7]
showed how to incorporate uncertainty. Backus et al. [2] and Epstein and Hynes [10] survey appli-
cations of the model.

2



10 10

0 0

A

Ac

t = 1 t = 2

0

10

0

10

A

Ac

∼ ⇒
A

Ac 10 0

0 10

10

0

10

0

A

Ac

≻

Figure 1: An Illustration of Intertemporal Hedging. The first ranking indicates that the
agent views the event A and its complement as equally likely. Given that, the second
ranking posits that the agent prefers consumption to be negatively rather than positively
autocorrelated. This ranking could be strict under a model of ambiguity aversion, but
not under the standard time-additive, expected-utility model. Intuitively, while negative
correlation reduces overall uncertainty, it implies a consumption profile that is not smooth
over time, which, in the context of the standard model, perfectly offsets the benefits from
reducing uncertainty.

consume it as soon as the refund arrives. The uncertainty is when the tax refund
will arrive. We show that seeking an intertemporal hedge against this special type of
uncertainty, about the timing of consumption within a given span of time, is indicative
of ambiguity aversion whether discounting is exogenous as in (1.1) or endogenous as
in (1.2). In particular, such behavior cannot be rationalized by the expected utility
model in (1.2).

The analysis is supplemented by two representation theorems. The first one
concerns a general class of preferences which includes the models in (1.1) and (1.2)
as special cases. The defining property of this class is an axiom which we call path
stationarity and which is assumed in both Kochov [17] and Epstein [7]. The axiom
extends Koopmans’ classical notion of stationarity to a setting of uncertainty by
positing the following implication. Consider an event A resolving in period t and
note that A may affect contemporaneous consumption as well as consumption in a
more distant period t+k. Path stationarity requires that the agent’s attitudes toward
uncertainty do not depend on the date on which consumption takes place and, in
particular, on k.2 This seemingly innocuous restriction on behavior turns out to
be remarkably powerful. Its first implication is that the utility of a non-stochastic

2Epstein [7] and Kochov [17] refer to path stationarity simply as stationarity. As we explain in
Section 5.1, we adopt a different name so as to distinguish path stationarity from another extension
of Koopmans’ axiom.
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consumption stream is computed as in (1.2):

U(c0, c1, ...) = u(c0) + b(c0)u(c1) + b(c0)b(c1)u(c2) + ... (1.3)

This implication sets the stage for our analysis of ambiguity aversion vis-á-vis en-
dogenous discounting, which requires the existence of such a utility function. The
second implication of path stationarity concerns the ranking of stochastic consump-
tion streams. As the lifetime utility of any such stream could be random, the agent
needs to assign an expectation I(ξ) ∈ R to each random variable ξ ∶ Ω → R. We
show that the mapping ξ ↦ I(ξ), which we call the agent’s certainty equivalent,
must be translation invariant and positively homogeneous, which means that for all
ξ ∶ Ω→ R, k ∈ R, α ∈ R+,

I(ξ + k) = I(ξ) + k and I(αξ) = αI(ξ). (1.4)

Certainty equivalents of this form are known as invariant biseparable and have
been studied extensively in the context of static choice under ambiguity. See Ghi-
rardato et al. [14] and the references therein. In contrast, we characterize such
certainty equivalents in terms of path stationarity, a property of intertemporal be-
havior.

Combining path stationarity with our notion of intertemporal hedging, our second
result shows that the certainty equivalent I is also concave and, hence, takes the
maxmin form

I(ξ) = minp∈P Epξ. (1.5)

Thus, we not only identify a more robust prediction of ambiguity aversion, we are
also able to put this prediction to use and generalize Kochov’s [17] characterization
of the maxmin model.3

2 Choice Setting and Some Definitions

Time is discrete and varies over an infinite horizon: t ∈ {0,1,2, ...} =∶ T . Uncertainty
is modeled by a filtered space (Ω,{Ft}t) where Ω is an arbitrary set of state of the
world and {Ft}t =∶ F is a filtration, i.e., an increasing sequence of algebras such that
F0 = {Ω,∅}. As usual, we interpret the algebra Ft to be the collection of all events

3An interesting aspect of Kochov’s [17] analysis is that, unlike many other studies of ambiguity
aversion, it does not require the existence of events with known, objectively given probabilities.
This is true of the present analysis as well.
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that resolve before or in period t. We assume that consumption outcomes lie in a
compact, connected, and separable topological space X.4 A stochastic consumption
stream is then an X-valued and F -adapted process, that is, a sequence h = (h0, h1, ...)
such that ht ∶ Ω→X is Ft-measurable for every t. As is standard in decision theory,
we also refer to a process h as an act. An act h = (h0, h1, ...) is deterministic if
each function ht ∶ Ω→X is constant, that is, if outcomes do not depend on the state
of the world. We use d, d′ ∈ H to denote such acts and, abusing notation, identify
them with elements of X∞. Given an algebra F ′ ⊂ ∪tFt, an act h is F ′-adapted if ht
is F ′-measurable for every t. An act h is finite if there is a finite algebra F ′ ⊂ ∪tFt
such that h is F ′-adapted. To avoid technical complications, we take the choice
domain to be the space H of all finite acts.

We also let B0 be the space of all simple and ∪tFt-measurable functions ξ ∶ Ω→ R.
We refer to such functions as random variables and endow B0 with the sup norm.
Given a set C ⊂ R, we use B0

C to denote the set of all C-valued functions in B0.
Abusing notation, we use k to denote both a real number and the function in B0

that is identically equal to k ∈ R. With this in mind, a function I ∶ B0 → R is
translation-invariant if I(ξ + k) = I(ξ) + k for all ξ ∈ B0, k ∈ R. It is normalized
if I(k) = k for all k ∈ R. Given α ∈ R, I is α-homogeneous if I(αξ) = αI(ξ) for all
ξ ∈ B0. If I is α-homogeneous for all α ∈ R++, then I is positively homogeneous.
Endowing B0 with the usual pointwise order, a function I ∶ B0 → R is increasing
if for all ξ, ξ′ ∈ B0, ξ ≥ ξ′ implies that I(ξ) ≥ I(ξ′). A normalized, increasing and
norm-continuous function I ∶ B0 → R is called a certainty equivalent. In later
sections, we use certainty equivalents to model the individual’s “beliefs” and think
of I(ξ) as “the expected value” assigned by the agent to the random variable ξ ∈ B0.
We use ∆(Ω) to denote the space of all finitely additive probability measures p on
the measurable space (Ω,∪tFt) and endow ∆(Ω) with the weak∗ topology, i.e., the
coarsest topology such that for every ξ ∈ B0, the linear function p↦ Epξ from ∆(Ω)
into R is continuous.

Finally, a preference relation ⪰ on a set Y is a complete and transitive binary
relation such that y ≻ y′ for some y, y′ ∈ Y . If Y is a topological space, then ⪰ is
continuous if the upper and lower contour sets, {y′ ∈ Y ∶ y′ ⪰ y} and {y′ ∈ Y ∶ y ⪰ y′},
are closed for every y ∈ Y .

4Compactness is not essential. See Kochov [17, p.240] for details. Connectedness is needed for our
representation theorems but not for the formulation of the axioms.
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3 Path Stationary Preferences

This section introduces the class of path stationary preferences mentioned in the
introduction, derives a representation for this class, and discusses the uniqueness of
the representation. The analysis serves as a backdrop for our study of intertemporal
hedging in Section 4, but may also be of independent interest as it generalizes several
existing results concerning path stationary preferences and endogenous discounting.

3.1 Axioms

Let ⪰ be a preference relation ⪰ on the space H of finite acts. The first restriction we
impose on ⪰ is a form of continuity familiar from Ghirardato and Marinacci [13]. It
weakens the usual notion of topological continuity by allowing the agent’s beliefs to
be representable by finitely additive, as opposed to countably additive, probability
measures, which is common in axiomatic work. To state the axiom, endow H with
the product topology.

Finite Continuity (FC): For every finite algebra F ′ ⊂ ∪tFt, the restriction of
⪰ to the subset of all F ′-adapted acts h ∈ H is continuous.

The next axiom posits that the tastes of the agent (how he evaluates deterministic
consumption streams) are not influenced by the state of the world. Roughly, this
means that if some deterministic act d ∈X∞ is preferred to d′ ∈X∞ unconditionally,
then d is also preferred to d′ conditional on any event A ∈ ∪tFt. As is well known
from Kreps [22, p.108] and others, this requirement facilitates the measurement of
the agent’s beliefs vis-á-vis his tastes. To state the axiom formally, let dAth be the
act obtained from h by replacing all outcomes after period t and in states ω ∈ A with
the respective outcomes of d. That is, given h ∈ H, d ∈ X∞, t ∈ T , and A ∈ Ft, dAth
is the act g ∈ H such that gk(ω) = dk for all ω ∈ A and k ≥ t, and gk(ω) = hk(ω)
otherwise.

State Independence (SI): For all t ∈ T,A ∈ Ft, and acts h ∈ H, d, d′ ∈X∞ such
that hk = dk = d′k for all k ≤ t − 1, if d ⪰ d′, then dAth ⪰ d′Ath. In addition, there
is some t ∈ T and A ∈ Ft such that if hk = dk = d′k for all k ≤ t − 1 and d ≻ d′, then
dAth ≻ d′Ath and dActh ≻ d′Acth.

The second part of State Independence posits the existence of an event A ∈ ∪tFt
such that both A and Ac preserve strict as well as weak rankings. The existence of
such events, called essential in the literature, is a mild technical requirement. In the
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context of the expected utility model in (1.2), an event A is essential if and only if
p(A) ∈ (0,1), that is, if neither A nor Ac are assigned probability zero. In the context
of the maxmin model in (1.1), an event A is essential if and only if p(A) ∈ (0,1) for
every p ∈ P.

The next axiom, Path Stationarity, is the main restriction we impose in this
section. Consider an event A resolving in period t and note that A may affect
contemporaneous consumption as well as consumption in a more distant period t+k.
The axiom requires that the agent’s attitude toward uncertainty do not depend on
the delay k. To state it formally, let (x,h) be the act g ∈ H such that g0 = x and
gt = ht−1 for all t > 0, where x ∈ X and h ∈ H. That is, (x,h) is obtained from h by
postponing the consumption date of each outcome by one period and inserting x in
period t = 0.

Path Stationarity (PS): For all acts h, g ∈ H and outcomes x ∈X, h ⪰ g if and
only if (x,h) ⪰ (x, g).

Path Stationarity extends Koopmans’ [19] classical notion of stationarity from
the space X∞ of deterministic acts to a setting that incorporates uncertainty. We
should highlight, however, that Path Stationarity is not the only such extension. In
particular, note that we work with a domain in which all acts are measurable with
respect to a fixed filtration F . This means that when we transform an act h into
(x,h), we are postponing the dates on which the outcomes of h are consumed, but
not the dates on which the relevant uncertainty resolves. If one were to postpone
both the timing of consumption and the timing of resolution of uncertainty, one
would obtain a different extension of Koopmans’ axiom. Figure 3 in Section 5.1
illustrates the difference between the two extensions, both of which have appeared
in the literature.

To simplify the exposition, from now on we say that a preference relation ⪰ on
H is path stationary if it satisfies FC, SI, and PS. Similarly, a preference relation
⪰ on X∞ is stationary if it is continuous in the product topology on X∞ and
stationary in the sense of Koopmans [19]. It would also be helpful to highlight two
additional axioms satisfied by the class of path stationary preferences. The first is
History Independence, which is implied by Path Stationarity and requires that
for all x, y ∈X and h, g ∈ H,

(x,h) ⪰ (x, g) if and only if (y, h) ⪰ (y, g).

The other axiom, Monotonicity, is implied by the conjunction of Path Stationarity
and State Independence. Letting h(ω) ∶= (h0(ω)h1(ω), ...) ∈X∞ be the consumption
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stream delivered by an act h ∈ H in state ω, the axiom requires that for all acts
h, g ∈ H,

h ⪰ g whenever h(ω) ⪰ g(ω) for every ω ∈ Ω.

Thus, h is preferred to g whenever h gives a better consumption stream in every
state of the world. A noteworthy implication of Monotonicity is that

h ∼ g whenever h(ω) ∼ g(ω) for every ω ∈ Ω. (3.1)

As formalized by equation (3.2) below and Lemma 6 in the appendix, (3.1) permits
the construction of a utility representation in which the agent evaluates stochastic
consumption streams by first computing lifetime utility state by state and then com-
puting the expectation of lifetime utility, using some certainty equivalent I. Many
models of intertemporal choice, including the ones in (1.1) and (1.2), are constructed
in this manner. To understand what (3.1) entails on a behavioral level, suppose an
act h delivers consumption that is uncertain only in a single period t, whereas g
delivers consumption that is uncertain in more than one period. According to (3.1),
such differences in the intertemporal distribution of uncertainty do not matter as
long as h and g deliver equally desirable consumption streams in every state ω ∈ Ω.
We refer the reader to Bommier et al. [3, p.1438] where this implication of Mono-
tonicity is discussed in much greater detail and where we contrast Monotonicity with
another axiom commonly used to construct intertemporal utility functions, namely,
Recursivity.5

3.2 A Representation Theorem

Let (U, I) be a pair consisting of a continuous, nonconstant function U ∶ X∞ → R
and a certainty equivalent I ∶ B0 → R. For every act h ∈ H, let U ○ h ∈ B0 be the
random variable ω ↦ U(h(ω)) representing the lifetime utility induced by the act
h and let

V (h) ∶= I(U ○ h). (3.2)

5The reader may notice that, abstracting from the existence of an essential event, Monotonicity
is strictly stronger than State Independence and wonder why did not impose Monotonicity from
the start and skip State Independence. Our goal is to highlight that, conditional on assuming
State Independence, which as we noted earlier facilitates the measurement of beliefs, Monotonicity
cannot be relaxed without relaxing Path Stationarity as well. In particular, the reader who finds
the conclusions of Theorem 1 in Section 3.2 too strong should know that they cannot be escaped
by relaxing Monotonicity while keeping Path Stationarity.
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The pair (U, I) represents a preference relation ⪰ on H if the function V ∶ H → R
is well-defined and represents ⪰. If the function U ∶X∞ → R takes the form

U(x0, x1, ...) = u(x0) + b(x0)u(x1) + b(x0)b(x1)u(x2) + ...
for some continuous functions u ∶X → R and b ∶X → (0,1), we say that U an Uzawa-
Epstein utility function and write (u, b) to denote it. Similarly, if a preference
relation ⪰ on X∞ admits an Uzawa-Epstein utility function, we say that ⪰ is an
Uzawa-Epstein preference relation. Finally, a certainty equivalent I ∶ B0 → R is
regular if there is some event A ∈ ∪tFt,A ∉ {Ω,∅}, such that I is strictly increasing
when restricted to the space of {A,Ac}-measurable functions ξ ∈ B0. Regularity is
needed to account for the existence of an essential event A, which was posited by
State Independence.

Theorem 1 A preference relation ⪰ on H is path stationary if and only if it has
a representation (U, I) such that U ∶ X∞ → R is an Uzawa-Epstein utility func-
tion (u, b) and the certainty equivalent I is regular, translation-invariant and b(x)-
homogeneous for every x ∈ X. Furthermore, if b(x) ≠ b(y) for some x, y ∈ X, then I
is positively homogeneous.

Theorem 1 generalizes two existing results on path stationary preferences. Ko-
chov [17] deduces the same restrictions on the certainty equivalent I, but under the
additional assumption of Future Independence, which posits that for all d, d′ ∈X∞

and x, y, x′, y′ ∈X,

(x, y, d) ⪰ (x′, y′, d) if and only if (x, y, d′) ⪰ (x′, y′, d′). (3.3)

In words, the choice of consumption in the first two periods is independent from
the common continuation stream d. It is known from Koopmans [20] that given a
stationary preference relation on X∞, this axiom implies a standard time-additive
utility function U(x0, x1, ...) = ∑t βtu(xt). Hence, the axiom rules out any intertem-
poral complementarities in the agent’s tastes and forces the rate of time preference
to be exogenous. On the other hand, Epstein [7] delivers an Uzawa-Epstein utility
function U ∶X∞ → R, but under the additional assumption of expected utility, which
in the present context means having a representation (U, I) such that I(ξ) = Epξ for
some belief p ∈ ∆(Ω).

We note that our ability to deduce restrictions on the utility function U and
the certainty equivalent I simultaneously, without making any assumptions other
than Path Stationarity, requires techniques that are quite different from those in
Kochov [17] and Epstein [7]. Section 5.2 gives an outline of the proof. There, we
also compare Theorem 4 with our main result in Bommier et al. [3], which employed
similar techniques.
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3.3 Uniqueness of the Representation

This section studies the uniqueness of the representation derived in Theorem 1. We
begin by considering a preference relation ⪰ on X∞ with two Uzawa-Epstein utility
functions.

Theorem 2 Suppose a preference relation ⪰ on X∞ has two Uzawa-Epstein utility
functions:

U(x0, x1, x2, ...) = u(x0) + b(x0)u(x1) + b(x0)b(x1)u(x2) + ...

Û(x0, x1, x2, ...) = û(x0) + b̂(x0)û(x1) + b̂(x0)b̂(x1)û(x2) + ...

Then, b = b̂ and U = αÛ + γ for some α ∈ R++, γ ∈ R.

Theorem 2 generalizes a well-known result by Koopmans [20] which delivers the
same conclusions but in the special case of exogenous discounting, that is, when the
function b ∶X → (0,1) is constant.6 Our theorem also generalizes a result by Epstein
[7] which delivers the same conclusions but in a richer setting in which the preference
relation ⪰ on X∞ is the restriction of some expected-utility preference ⪰′ on the space
of lotteries over X∞. In such a setting, the cardinal uniqueness of U ∶X∞ → R follows
directly from the von-Neuman-Morgenstern theorem. Using this, Epstein [7] goes on
to prove that the function b ∶ X → (0,1) is unique. In contrast, we deduce both
conclusions without the use of lotteries and the concomitant assumption of expected
utility.7

Introducing uncertainty once again, our next result builds on Theorem 2 to show
that the certainty equivalent I derived in Theorem 1 is unique whenever discounting
is endogenous. To state the result, let (u, b, I) denote the representation obtained in
Theorem 1.

Corollary 3 Suppose a path stationary preference relation ⪰ on H has two repre-
sentations (u, b, I) and (û, b̂, Î) as in Theorem 1. From Theorem 2, we know that
b = b̂. If the function b ∶X → (0,1) is nonconstant, then I = Î.

Theorem 4 in the next section delivers another instance in which the certainty
equivalent I is unique. There, instead of making assumptions about discounting, we
impose a notion of intertemporal hedging that restricts the certainty equivalent I to
be concave.
6In this special case, the cardinal uniqueness of U ∶X∞ → R translates into the cardinal uniqueness
of u ∶X → R.
7To illustrate the uniqueness of b ∶X → (0,1), assume that X ⊂ R and that the function U is suitably
differentiable. Then, given a constant stream (x,x, ...) ∈X∞, Epstein [7] shows that b(x)−1 is equal
to the marginal rate of substitution between any two periods t and t + 1.
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4 Intertemporal Hedging

This section tackles our main goal of disentangling the intertemporal implications
of ambiguity aversion from those of endogenous discounting. We begin by recall-
ing Kochov’s [17] notion of intertemporal hedging and its connection to ambiguity
aversion.

Intertemporal Hedging Against Uncertainty in Levels [IH-L]: For all t ∈
T, d ∈X∞, and h, g ∈ H,

(d−(t,t+1), ht, ht) ∼ (d−(t,t+1), gt, gt) implies that

(d−(t,t+1), ht, gt) ⪰ (d−(t,t+1), ht, ht).

Figure 1 in the introduction illustrated the axiom by abstracting from the deter-
ministic consumption in periods k ≠ t, t + 1.8 As noted there, the choice between
(d−(t,t+1), ht, gt) and (d−(t,t+1), ht, ht) can be understood as a choice between neg-
ative and positive autocorrelation. The benefit from negative autocorrelation is
that it reduces the overall uncertainty faced by the agent; the benefit from posi-
tive autocorrelation is that it smoothes consumption over time. By choosing the
act (d−(t,t+1), ht, gt), the agent reveals that reducing uncertainty is of greater con-
cern to him. Assuming a representation (U, I) with a time-additive utility function
U(x0, x1, ...) = ∑t βtu(xt),9 Kochov [17] showed that this concern translates into am-
biguity aversion. Indeed, computing the lifetime utilities induced by the three acts
in IH-L, we see that

U ○ (d−(t,t+1), ht, gt) =
1

1 + β U ○ (d−(t,t+1), ht, ht)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ξ

+ β

1 + β U ○ (d−(t,t+1), gt, gt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ξ′

. (4.1)

Consequently, IH-L can be rewritten as the implication:

I(ξ) = I(ξ′) ⇒ I( 1

1 + β ξ +
β

1 + β ξ
′) ≥ I(ξ). (4.2)

The above is nothing else but the requirement that the certainty equivalent I be
quasiconcave. One may therefore view IH-L as an analogue of Schmeidler’s [30]

8That this is w.l.o.g. follows from the assumption of a time-additive utility function U ∶ X∞ → R
made in Kochov [17].
9Recall from Section 3.2 that such a utility function can be deduced by imposing Future Indepen-
dence in addition to Path Stationarity.
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definition of ambiguity aversion, which delivers the same restriction on I but in a
different domain.10

Unfortunately, equation (4.1) and, hence, the connection between IH-L and am-
biguity aversion break down when U is not time-additive. Moreover, some path
stationary preferences may exhibit a strict desire for intertemporal hedging, at least
in some circumstances, even when the certainty equivalent I is of the expected utility
form.

Example 1 (IH-L with Uzawa-Epstein Utility) Assuming X ⊂ R, consider the
example in Figure 1 but replace 10 and 0 with two arbitrary monetary outcomes
x > y.11 The lifetime utility of a deterministic consumption stream (xt, xt+1) ∈ X2

is given by U(xt, xt+1) = u(xt) + b(xt)u(xt+1), while the certainty equivalent I is of
the expected utility form, that is, I(ξ) = Ep(ξ). Under these assumptions, the first
ranking in Figure 1 implies that p(A) = p(Ac) = 0.5. In turn, the second ranking holds
if and only if (b(x) − b(y))(u(y) − u(x)) ≥ 0. If u ∶ X → R is a strictly increasing
function, we see that a strict preference for intertemporal hedging arises if and only
if b ∶ X → (0,1) is a strictly decreasing function. The latter assumption, known as
increasing marginal impatience, is common in applied work. See Lucas and
Stokey [23], Epstein [8], and Backus et al. [2]. What matters presently, however,
is that a desire to hedge intertemporally arises not because of a stronger concern
about uncertainty, but because of an intertemporal complementarity in the ranking
of deterministic consumption streams, i.e., the assumption of increasing marginal
impatience, which may be viewed as lessening the desire to smooth consumption across
time.

Example 1 shows that to pin down intertemporal implications of ambiguity aver-
sion, we must find a way to bypass the taste complementarities associated with
endogenous discounting. Interestingly, this goal takes us through a notion of impa-
tience due to Koopmans [19].

Impatience: For all t > 0, a, b ∈X t, and d ∈X∞,

(a, a, a, ...) ⪰ (b, b, b, ...) if and only if (a, b, d) ⪰ (b, a, d).
10A more direct analogy between IH-L and Schmeidler’s [30] definition of ambiguity aversion is made
in Kochov [17, p.242]. Note as well that there are definitions of ambiguity aversion which are neither
implied nor imply quasiconcavity of the certainty equivalent. See Epstein [9] and Ghirardato et al.
[14] for details.
11The formal, infinite-horizon version of IH-L reduces to the two-period example above by choosing
d to be a constant stream (z, z, ...) such that u(z) = 0.
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The axiom posits that given two finite strings of outcomes, the agent wants
to consume the better one first. Koopmans [19] conjectured that all stationary
preferences on X∞ have this property. While this conjecture was proved wrong by
Koopmans et al. [21], Epstein [7] observed that Impatience holds for all Uzawa-
Epstein preferences on X∞. From Impatience, we deduce that for all t > 0, a, b ∈X t,
and d, d′ ∈X∞,

(a, b, d) ⪰ (b, a, d) if and only if (a, b, d′) ⪰ (b, a, d′). (4.3)

To see why this implication is important to us, recall from Section 3.1 that path
stationary preferences are history independent. It follows from the discussion of
Future Independence in Section 3.2 that any intertemporal complementarity in the
agent’s tastes must take the form of a future dependence, as is the case when (3.3) is
violated. But (4.3) shows that when the agent is asked about the order in which he
wants to consume a and b, there are no such future dependencies. Namely, his choice
is independent of the continuation stream d. This suggests the following notion of
intertemporal hedging. Once again, the agent would seek to take different “bets”
in different time periods. However, the uncertainty he would try to hedge would no
longer concern the level of consumption in a given time period t, as was the case
with IH-L, where the “bet” gt taken in t + 1 can be viewed as a hedge against the
“bet” ht taken in period t. Instead, the agent would try to hedge uncertainty about
the order in which a given set of outcomes is consumed within a given set of periods.
Since in these situations there are no intertemporal complementarities that stem
from the agent’s tastes, the behavior must be driven by the agent’s attitudes toward
uncertainty.

Figure 2 gives an example in which time spans a period of two years, with each
year consisting of a fall and a spring semester. A payment of $10 is received in each
year but the exact timing, fall or spring semester, depends on the realization of an
event A. On the left, the timing of delivery in year 1 is perfectly negatively correlated
with the timing of delivery in year 2. On the right, the correlation is positive.
Assuming the events A and Ac are equally likely, Figure 2 indicates a preference for
negative over positive correlation. As with IH-L, the benefit of negative correlation
is that it reduces overall uncertainty, by insuring an early payment in at least one of
the two years.

To formalize these ideas, fix some t > 1 and a finite stream a ∶= (x0, x1, ..., xt−1) ∈
X t of outcomes. For every permutation π ∶ {0,1, ..., t − 1} → {0,1, ..., t − 1}, let
πa = (xπ(0), xπ(1), ..., xπ(t−1)) ∈ X t be the corresponding permutation of a. Say that
h ∈ H is a repeating permutation act (rp-act) if there is some t ∈ T, a ∈ X t,
and permutations πω ∶ {0,1, ..., t − 1} → {0,1, ..., t − 1}, one for each ω ∈ Ω, such that
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Figure 2: Intertemporal hedging when the relevant uncertainty concerns the timing of an
outcome within a block of periods. The negatively correlated act on the left reduces overall
uncertainty by guaranteeing an early payment in at least period. The positively correlated
act on the right “smooths” consumption over time by delivering the same pattern of yearly
consumption in each year. As in Figure 1, the ranking indicates that reducing uncertainty
is more important.

h(ω) = (πωa, πωa, ...) for every ω ∈ Ω. The definition has three features: i) time is
partitioned into blocks of equal length, ii) within each block, the only thing uncertain
is the order in which the elements of a are consumed, iii) this uncertainty is perfectly
positively correlated across blocks. As in Figure 2, an agent confronted with an
rp-act may choose to reverse the positive correlation. Let h, g ∈ H be two rp-acts
such that h(ω) = (πωa, πωa, ...) and g(ω) = (π̃ωa, π̃ωa, ...) for every ω ∈ Ω. If h ∼ g,
intertemporal hedging means that the agent would prefer the act m ∈ H such that
m(ω) = (πωa, π̃ωa, π̃ωa, ...) for every ω ∈ Ω. Such an act m appears on the left hand
side of Figure 2. Below, we state a stronger axiom which allows one of the acts h, g
to be arbitrary. This facilitates the proof of Theorem 4 and brings about a stronger
prediction that we can associate with ambiguity aversion.

Intertemporal Hedging against Uncertainty in Timing [IH-T]: For every
g ∈ H, t > 1, a ∈ X t, and rp-act h ∈ H such that h(ω) = (πωa, πωa, ...) for every ω, let
m ∈ H be the act such that m(ω) = (πωa, g(w)) for every ω. If h ⪰ g, then m ⪰ g.

The next theorem formalizes the connection between IH-T and ambiguity aversion
by showing that, within the class of path stationary preferences, IH-T delivers a
certainty equivalent I of the maxmin form.
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Theorem 4 A path stationary preference relation ⪰ on H satisfies IH-T if and only
if it has a representation (u, b, I) such that

I(ξ) = minp∈P Epξ

for some weak∗-closed and convex set P of probability measures on (Ω,∪tFt). More-
over, the set P is unique.

To sketch a proof of Theorem 4, let (u, b, I) be the representation obtained in
Theorem 1 and observe that the utility of a consumption stream (x, y, d′) ∈X∞ can
be written as

U(x, y, d′) = (1 − b(x)b(y))U(x, y, x, y, ...) + b(x)b(y)U(d′). (4.4)

Thus, U(x, y, d′) is a convex combination of the utility of the initial block (x, y),
repeated ad infinitum, and the utility of the continuation stream d′. Similarly, the
utility of a stream (y, x, d′′) ∈X∞ is equal to

U(y, x, d′′) = (1 − b(x)b(y))U(y, x, y, x, ...) + b(x)b(y)U(d′′). (4.5)

Comparing (4.4) and (4.5), notice that the weights in the two convex combinations
are exactly the same. With this in mind, let h, g,m ∈ H be acts as in the statement
of IH-T and note that the various consumption paths m(ω) ∈X∞ induced by the act
m ∈ H take a form similar to (x, y, d′) and (y, x, d′′), though the initial block could be
of any length t ≥ 2. The utility of each path m(ω) can thus be written as a suitable
convex combination, in a manner that parallels (4.4) and (4.5), and, in addition, the
weights in all these combinations are independent of ω. Letting a = (x0, x1, ..., xt−1) ∈
X t be the list of elements used to define h and letting b(a) ∶= Πt−1

k=0b(xk), it follows
that

U ○m = (1 − b(a))[U ○ h] + b(a)[U ○ g]. (4.6)

Thus, the lifetime utility U ○m induced by m is a convex combination of U ○ h and
U ○ g. This is the precise sense in which we previously said that the act m “reduces
overall uncertainty.” Letting ξ ∶= U ○h, ξ′ ∶= U ○g, γ ∶= b(a), we also see that IH-T can
be written as the implication

I(ξ) ≥ I(ξ′) ⇒ I((1 − γ)ξ + γξ′) ≥ I(ξ′). (4.7)

Thus, once again, intetemporal hedging is seen to be equivalent to the quasiconcavity
of I and may be viewed as an analogue of Schmeidler’s [30] definition of ambiguity
aversion.
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One caveat is that the quasiconcavity asserted in (4.7) is limited in two ways.
First, the random variable ξ is not arbitrary, but restricted to be the lifetime utility
U ○ h of some rp-act h ∈ H. Second, one cannot pick any weight γ ∈ (0,1) to form a
convex combination of ξ and ξ′. Instead, the weight γ is tied to ξ via the identity
γ = b(a), where a = (x0, ..., xt−1) is the list of outcomes used to construct h. The
main challenge in the proof of Theorem 4 is to overcome these limitations and show
that IH-T is in fact equivalent to the full-blown quasiconcavity of I. We do so by
proving two structural results about rp-acts. The first is that they are dense in the
space of all acts. The second and more challenging result is that the space of lifetime
utilities U ○ h attainable by such acts (or a suitable normalization thereof) contains
an open set.12

Finally, it is worth highlighting that the derivation of (4.6) and (4.7) does not
require the full force of Path Stationarity: we need U to be of the Uzawa-Epstein
form, but do not need the positive homogeneity or scale invariance of I. Thus, if U
is of the Uzawa-Epstein form, a quasiconcave I would always imply IH-T, so that,
in particular, a strict desire to hedge intertemporally can be interpreted as a sign of
ambiguity aversion. This is important since some well-known models of ambiguity
aversion feature quasiconcave certainty equivalents I that are not positively homo-
geneous or translation-invariant. Among others, this is true of the variational model
of Maccheroni et al. [27] and the model of Cerreia-Vioglio et al. [4]. On the other
hand, we do require the full force of Path Stationarity to deduce that IH-T implies
the full-blown quasiconcavity of I.

5 More On Path Stationarity

In this final section, we offer some additional remarks on path stationarity, the proof
of Theorem 1 and its connection to our results in Bommier et al. [3].

5.1 Two Notions of Stationarity

Figure 3 depicts two distinct ways in which one can extend Koopmans’ notion of
stationarity from deterministic to stochastic environments. The top part depicts
Path Stationarity, while the bottom part depicts another extension for which we
reserve the name Stationarity. In both parts, the relevant uncertainty is the outcome

12An interesting implication of these results is that virtually any trade-off that can be formulated
in the space of lifetime utilities can be construed as arising from uncertainty about the timing of
consumption as captured by rp-acts.
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Figure 3: The top part of the figure depicts Path Stationarity. The bottom part
depicts Stationarity. In both parts, the relevant uncertainty is the outcome of a coin
toss. For the sake of simplicity, it is assumed that all consumption takes place in a
single period.

of a coin toss. Consistent with the explanation in Section 3.1, Path Stationarity
considers a situation in which the coin is always flipped in period t = 1, but one
changes the date on which consumption takes place. The axiom requires that those
changes do not affect the individual’s attitudes toward uncertainty. The second
extension, Stationarity, considers a situation in which one simultaneously changes
the date on which the coin is flipped and the date on which consumption takes
place. In particular, this is done so that the time distance between the two dates is
kept unchanged.

The two extensions concern choice situations that are qualitatively different. Sta-
tionarity is of interest when the underlying uncertainty repeats itself. In such a case,
an individual may confront the same uncertainty and the same decision problem
at different moments in time, with Stationarity implying that the individual would
make the same decision. In particular, Stationarity implies that choices are history-
independent and time-consistent, an implication that is at the heart of stationary
dynamic programming. On the other hand, Path Stationarity is of interest when the
impact of an event can be delayed over time. Consider an agent who has to choose
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between two jobs whose career trajectories will be affected by some event A. The
agent has to commit to a job prior to the realization of the event, but can opt to
start immediately or delay the start date until after a one-month vacation. Path Sta-
tionarity says that the agent would take the same job whether he goes on vacation
or not.

Interestingly, both extensions have appeared in the literature under the single
name Stationarity. Thus, Epstein [7] and Kochov [17] call Stationarity what we
call Path Stationarity. It is more typical, however, to reserve the name Stationarity
for the other notion in Figure 3, as is done in Epstein and Zin [12] and Chew and
Epstein [5], among others. To avoid confusion, we propose different names for the
two extensions.

5.2 Theorem 1: A Proof Sketch

Theorem 1 in this paper uses techniques from Lundberg’s [25] work on functional
equations. In this section, we highlight the connection to Lundberg’s work as well
as compare Theorem 1 with our results in Bommier et al. [3], where we used similar
techniques. To begin, recall from Koopmans [19] that a preference relation ⪰ on X∞

is stationary if and only if every continuous utility function U ∶X∞ → R of ⪰ satisfies
the recursion

U(x0, x1, x2, ...) = φ(x0, U(x1, x2, ...)) ∀(x0, x1, ...) ∈X∞. (5.1)

The function φ ∶X ×U(X∞) → U(X∞) above, called a time aggregator, is strictly
increasing in the second argument and continuous. With this in mind, if a preference
relation ⪰ on H has representation (U, I) such that U can be written recursively as
in (5.1), it is helpful to make φ explicit and write (U,φ, I) instead of (U, I). Given
a U(X∞)-valued random variable ξ ⊂ B0 and an outcome x ∈ X, let φ(x, ξ) ∈ B0 be
the random variable ω ↦ φ(x, ξ(ω)). Take an act (x,h) ∈ H, as in the statement of
Path Stationarity, and consider the equalities:

V (x,h) = I(φ(x,U ○ h)) = φ(x, I(U ○ h)) ∀x ∈X,h ∈ H. (5.2)

The first equality combines the definition of V with (5.1). The interesting equality
is the second one. It says that there are two ways to compute the utility of an act
(x,h). The expression I(φ(x,U ○ h)) means that one first aggregates utility across
time and then across states. Conversely, the expression φ(x, I(U ○h)) means that one
first computes the expectation I(U ○ h) of future utility and then aggregates across
time by adding the utility of the initial outcome x. When these two computations
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agree, as in (5.2), we say that the certainty equivalent I and the time aggregator φ
permute. The next lemma shows that this is true if and only if Path Stationarity
holds.

Lemma 5 A preference relation ⪰ on H is path stationary if and only if it has a
representation (U,φ, I) such that the time aggregator φ and the certainty equivalent
I permute. The latter is true for all representations (U,φ, I) of a path stationary
preference relation ⪰.

Lemma 5 is the bridge to Lundberg’s work. Thus, when ∣Ω∣ = 2, the second
equation in (5.2), viewed as a functional equation to be solved for φ and I, becomes
what Lundberg calls a distributivity equation. He shows that the solutions to this
equation are well behaved locally, by which we mean that, after a suitable monotone
transformation of utility, and after restricting the functions φ and I to a suitable open
set, they have the properties sought after in Theorem 1. Lundberg’s work leaves us
with three problems to address. First, we have to verify a technical restriction on the
functions φ and I required by Lundberg. Second, we have to extend Lundberg’s local
solution to obtain a representation for the entire preference relation ⪰ on H. Third,
we have to extend Lundberg’s analysis to state spaces Ω of arbitrary cardinality. The
last of these problems requires care but is not the most insightful part of our proof.
More interesting is the way we deal with the other problems. Regarding the first,
we are able to show that Lundberg’s restriction is satisfied whenever the functions φ
and I are part of a representation (U,φ, I) of a path stationarity preference relation
on H. Intuitively, the infinite horizon implies that the time aggregator φ encodes a
form of discounting, which turns out to be sufficient for Lundberg’s restriction. For
details, the reader should check Lemma 7 in the appendix and how this lemma is
used in Section A.1.4.

To get a sense of how we deal with the local nature of Lundberg’s solutions, let
O ⊂ R be an open set such that the desired representation obtains whenever the
acts h,h′ ∈ H are such that U ○ h,U ○ h′ are O-valued. Fix some x∗ ∈ X such that
U(x∗, x∗, ...) ∈ O and take two arbitrary acts h,h′ ∈ H. From Path Stationarity,
deduce that

h ⪰ h′⇔ (x∗, h) ⪰ (x∗, h′) ⇔ (x∗, x∗, h) ⪰ (x∗, x∗, h′) ⇔ . . . (5.3)

and note that, as we increase the number of initial periods in which x∗ is consumed,
the acts in (5.3) converge to (x∗, x∗, x∗, ...). Hence, their utilities are eventually
contained in the set O in which the functions (U,φ, I) are well behaved. But the
equivalences in (5.3) show that the restrictions of these functions to the set O repre-
sent the entire preference relation.
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Lundberg’s results were also used in our companion paper, Bommier et al. [3],
where we assumed Monotonicity, Recursivity, and Stationarity (in the stochastic
sense of Section 5.1). Comparing the two papers, the first thing to notice is that
the preferences they characterize overlap, but aren’t nested. Most notably, in our
companion paper we do not assume Path Stationarity, with the consequence that
the certainty equivalent I need not be positively homogeneous. As a result, the
preferences in Bommier et al. [3] include the multiplier preferences of Hansen et al.
[16] and the more general variational preferences of Maccheroni et al. [28], while
these preferences are presently excluded. On the other hand, in this paper we do
not assume recursivity which, in the context of Theorem 4, means that the set P of
beliefs need not have the “rectangular structure” identified by Epstein and Schneider
[11]. Given our focus on ambiguity aversion, this may be desirable since, as Epstein
and Schneider [11] highlight, recursivity comes at the cost of ruling out some natural
forms of ambiguity-averse behavior as well as some common specifications of the set
P of beliefs.

Mathematically, the results in Bommier et al. [3] are more complicated in that,
there, we had to solve a system of distributivity equations It(φ(x, ξ)) = φ(x, It+1(ξ)),
t ∈ T , rather than a single equation with a single certainty equivalent I, as in (5.2).
On the other hand, the lack of Path Stationarity meant that we had deal with
the local nature of Lundberg’s solutions in a different way. We did so by making
the auxiliary assumption that X is an interval (X ⊂ R) and that preferences are
increasing in the implied pointwise order on X∞. This assumption, which we called
Deterministic Monotonicity, implies that Lundberg’s local solutions are in fact
global. The assumption also led to a more direct, but less general, proof of Lundberg’s
technical restriction.13

A Appendix

Given functions f ∶X ′ → Y ′ and g ∶ Y ′ → Z ′, we use g ○ f and gf interchangeably to
denote the composition of f and g. Given an interval C ⊂ R, B0

C denotes the sets of
all C-valued functions ξ ∈ B0. Given a finite algebra F ′ ⊂ ∪tFt, B0(F ′) is the set of
all F ′-measurable functions ξ ∈ B0. The set B0

C(F ′) ⊂ B0(F ′) is similarly defined. A

13There is still a significant overlap between the two proofs. Given the complexity of both proofs
however and the noted differences, we chose to provide another self-contained proof rather than
ask the reader to piece together two different papers. Note, in particular, that our present proof,
including the expository discussion of iteration groups in Section A.1.3, highlights the local nature
of Lundberg’s solutions, which wasn’t needed in the earlier paper.
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function I ∶ B0
C → R is finite continuous if for every finite algebra F ′ ⊂ ∪tFt, the

restriction of I to B0
C(F ′) is norm-continuous.

A.1 Proof of Theorem 1

Necessity of the axioms is obvious. We prove sufficiency.

A.1.1 Preliminaries

Lemma 6 State Independence and Path Stationarity imply Monotonicity.

Proof. Let h,h′ ∈ H be such that h(ω) ⪰ h′(ω) for every ω. Because h,h′ are
finite, there is some t ∈ T such that hk, h′k are Ft-measurable for every k. Fix
some a = (x0, ..., xt−1) ∈ X t and consider the acts (a, h), (a, h′). By construction,
(a, h)(ω) = (a, h(ω)). By PS, (a, h(ω)) ⪰ (a, h′(ω)) for every ω ∈ Ω. Moreover, h ⪰ h′
if and only if (a, h) ⪰ (a, h′), so it suffices to show the latter. Think of (a, h), (a, h′)
as functions from Ω into X∞. Since h,h′ are finite, there is a coarsest partition
{A1,A2, ...,An} of Ω with respect to which both these functions are measurable.14

Replace the infinite stream of (a, h′) on A1 by the respective infinite stream of (a, h).
By SI, the new act is preferred to (a, h′). Take the new act and replace its infinite
stream on A2 by the respective infinite stream of (a, h) and apply SI again. After n
such steps, we see that (a, h) ⪰ (a, h′).

Lemma 7 Consider a path stationary preference relation ⪰ on H. Then,

1. There are x, y ∈X,d ∈X∞ such that (x, d) ≻ (y, d).

2. For every x ∈ X,h ∈ H, (x,x, ...) ⪰ h if and only if (x,h) ⪰ h. Similarly,
h ⪰ (x,x, ...) if and only if h ⪰ (x,h).

3. The best and worst sequences in X∞ are constant. Denote them by (z∗, z∗, ...)
and (z, z, ...).

4. Writing d∗ for (z∗, z∗, ...), we have (z∗, z, d∗) ≻ (z, z, d∗).

5. There exists a sequence (xn)n in X, converging to z such that (xn, z, z, ...) ≻
(z, z, z, ...). Moreover, for every n ∈ N, d ∈ X∞, there is d′ ∈ X∞ such that
(z, d′) ∼ (xn, z, d).

14Measurability with respect to a partition means measurability with respect to the algebra generated
by the partition.
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Proof. Property (1) is proved in Kochov [17, Lemma 5]. Properties (2) and (3) can
be proved as in Kochov [18, Lemmas 3.3-3.4]. Turn to (4). By way of contradiction,
suppose (z, z, d∗) ⪰ (z∗, z, d∗). Since d∗ ⪰ (z, d∗) and ⪰ is path stationary, we obtain

(z, d∗) ⪰ (z, z, d∗) ⪰ (z∗, z, d∗).

By PS, (z∗, z, d∗) ⪰ (z∗, z∗, z, d∗). By the contradiction hypothesis,

(z, z, d∗) ⪰ (z∗, z, d∗) ⪰ (z∗, z∗, z, d∗). (A.1)

Since (z, d∗) ⪰ (z∗, z, d∗),

(z∗, z∗, z, d∗) ⪰ (z∗, z∗, z∗, z, d∗). (A.2)

Combining (A.1) and (A.2), we get

(z, z, d∗) ⪰ (z∗, z∗, z∗, z, d∗).

Repeating the argument gives (z, z, d∗) ⪰ ((z∗)n, z, d∗) for every n ∈ N. By FC
, (z, z, d∗) ⪰ d∗, contradicting property (2). Finally, turn to property (5). From
property (2), we know that (z∗, z, z, ...) ≻ (z, z, ...). Because X is connected, there is
a sequence (xn)n in X converging to z such that (xn, z, z, ...) ≻ (z, z, ...). By property
(2) again, (z, d∗) ≻ (z, z, d∗). Since (xn, z, d∗) converges to (z, z, d∗) as n → ∞, we
have (z, d∗) ≻ (xn, z, d∗) for all n larger than some N ∈ N. By construction, it is also
the case that

(xn, z, d∗) ⪰ (xn, z, z, z, ...) ≻ (z, z, z, ...) ∀n ∈ N.

Combining the last two observations gives (z, d∗) ≻ (xn, z, d∗) ≻ (z, z, z, ...) for all
n ≥ N . By PS, it is also the case that

(xn, z, d∗) ⪰ (xn, z, d) ⪰ (xn, z, z, ...) ≻ (z, z, ...) ∀d ∈X∞, n ∈ N.

Summing up, we have

(z, d∗) ≻ (xn, z, d) ≻ (z, z, z, ...) ∀n ≥ N,d ∈X∞.

By FC and the connectedness of X∞, there is d′ ∈ X∞ such that (z, d′) ∼ (xn, z, d).
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A.1.2 Proof of Lemma 5

From now on, we adopt a more permissive notion of a representation (U,φ, I)
according to which the certainty equivalent I is defined on B0

U(X∞) rather than the

entire space B0, and I is only finite continuous rather than norm-continuous. Using
this notion, this section proves an analogue of Lemma 5. The proof of the lemma as
stated in the main text would follow once we complete the proof of Theorem 1. See,
e.g., Lemmas 16 and 23.

It is obvious that the existence of a representation such that I and φ permute
implies Path Stationarity. To prove the opposite direction, assume that ⪰ is path
stationary. Because X∞ is connected and separable in the product topology, we know
from Debreu [6] that there is a continuous function U ∶ X∞ → R representing the
restriction of ⪰ to X∞. For every x ∈ X and k ∈ U(X∞), choose some dk ∈ X∞ such
that U(dk) = k and define φ(x, k) ∶= U(x, dk). Since U is continuous, φ is continuous
in its first argument. Because the restriction of ⪰ to X∞ is stationary, φ is strictly
increasing in the second argument. Since U is continuous, the set φ(x,U(X∞)) is
connected for every x ∈ X. Conclude that φ is continuous in the second argument
and, ultimately, that φ is a time aggregator for U . Turn to the construction of a
certainty equivalent I ∶ B0

U(X∞) → R. Since X∞ is connected, a standard argument
shows that for every act h ∈ H, there is an act dh ∈ X∞ such that h ∼ dh. Extend
U from X∞ to H by letting V (h) ∶= U(dh). Recall that U ○ h denotes the function
ω ↦ U(h(ω)) and let U ○ H ∶= {U ○ h ∶ h ∈ H} ⊂ B○. Define I ∶ U ○ H → R by
letting I(U ○ h) = V (h). By Lemma 6, ⪰ satisfies Monotonicity. It follows that I
is well-defined and increasing. Because ⪰ satisfies FC, I is finite-continuous. By
definition, I(k) = k for all k ∈ U(X∞), that is, I is normalized. Altogether, (U,φ, I)
is a representation of ⪰.

The final step is to show that for all representations (U,φ, I) of ⪰, I and φ
permute. Fix some x ∈ X,h ∈ H, and note that U ○ (x,h) = φ(x,U ○ h). Choose
d ∈ X∞ such that d ∼ h. By Path Stationarity, (x, d) ∼ (x,h). Since the certainty
equivalent I is normalized,

I(φ(x,U ○ h)) = U(x, d) = φ(x,U(d)) = φ(x, I(U ○ h)).

A.1.3 Iteration Groups

We need to introduce some mathematical concepts from Lundberg [25]. Let C ⊂ R
be a nonempty, open interval and λ an extended real number in R++ ∪ {+∞}. Let
{gα ∶ α ∈ (−λ,λ)} be a family of functions such that each function gα is defined on an
interval Cα ⊂ C and gα(Cα) ⊂ C. Suppose each function gα is continuous and strictly
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increasing, and its graph disconnects the Cartesian product C2.15 Suppose further
that the graph of gα ○ gβ is a subset of the graph of gα+β, with the latter holding
for all α,β ∈ (−λ,λ) such that α + β ∈ (−λ,λ). We call such a family of functions
an iteration group over C. When such a group {gα ∶ α ∈ (−λ,λ)} is given, we
assume that the group is maximal, which means that there is no other iteration
group {g̃α ∶ α ∈ (−λ̃, λ̃)} over C such that λ < λ̃ and gα = g̃α for all α ∈ (−λ,λ). When
no confusion arises, we may also suppress the interval C and the bound λ, and speak
simply of an iteration group {gα}.

Given an iteration group {gα} over C, g0 is the identity function on C, which
we denote as j. More generally, if α is an integer, then gα is the α-iterate of the
function g1, with the domain of the α-iterate restricted so that the range does not
exceed the set C. One can thus view an iteration group {gα} as a way of defining
the α-iterate of a function g1 for all α, integer or not. Note as well that an iteration
group {gα ∶ α ∈ (−λ,λ)} over C induces an iteration group over any nonempty, open
interval D ⊂ C. In particular, let λ̂ be the supremum of all α ∈ (−λ,λ) such that the
graph of gα∣D intersects D2. Then, {gα∣D ∶ α ∈ (−λ̂, λ̂)} is an iteration group over D.

Example 2 Let C = R, λ = +∞. Let f(k) = a + bk, a, b ∈ R be an affine function
defined for all k ∈ R. If b ≠ 1, there is a unique iteration group {gα} such that g1 = f .
In fact, we can compute each function gα explicitly:

gα(k) = a1 − bα
1 − b + bαk. (A.3)

In this example, all functions gα, α ≠ 0, share the same fixed point k∗ = a(1 − b)−1.
This observation holds more generally. Thus, if {gα} is an iteration group over C
and gα(k) = k for some α ≠ 0 and k ∈ C, then gβ(k) = k whenever k is in the domain
of gβ.

An iteration group {gα} over C is fixed-point-free if none of the functions gα,
α ≠ 0, has a fixed point. As noted in Lundberg [25], we can then find a so-called Abel
function L ∶ C → R for the iteration group, which means that gα(k) = L−1(L(k)+α)
for all k in the domain of gα and all α ∈ (−λ,λ). For future reference, observe that if
L is an Abel function for {gα}, then so is the function L+c where c is an arbitrary real
number. Also, when {gα} is fixed-point-free, it it w.l.o.g. to assume that gα(k) > k
for all k in the domain of gα and all α > 0. Else, we can relabel the group by taking

15The graph of gα disconnects C2 if for every (x, y), (x′, y′) ∈ C2 such that x,x′ ∈ Cα and y >
gα(x), y′ < gα(x′), a continuous curve in C2 that connects (x, y) to (x′, y′) must intersect the graph
of gα.

24



g̃α ∶= g−α for every α ∈ (−λ,λ). Under this assumption, any Abel function L for {gα}
is strictly increasing.

Going back to our example, suppose D is an interval such that all functions
gα, α ≠ 0, are fixed-point-free when restricted to D. If, for instance, we take D =
(k∗,+∞), then L(k) ∶= logb(k − k∗) is an Abel function for the group {gα∣D} on D.

Given a topological space Z and a set A ⊂ Z, we use A○ to denote the topological
interior of A. For a sequence (An)n of sets in Z, we denote by LsAn ⊂ Z and LiAn ⊂ Z
the topological lim sup and lim inf of the sequence. See Aliprantis and Border [1,
p.109] for precise definitions of these concepts. We write An →L A if A = LiAn =
LsAn. The set A is called the closed limit of (An)n. Following Lundberg [25], a
correspondence f∗ ∶ C ⇉ R, where C is an interval in R, is called a cliff function if
the set f∗(k) is connected for every k ∈ C. A cliff function f∗ is increasing if k ≤ k′
and l ∈ f∗(k), l′ ∈ f∗(k′) imply l ≤ l′ for all k, k′ ∈ C. Observe that any increasing
function f ∶ C → R is an increasing cliff function. If we identify every cliff function
f∗ with its graph in R×R, we can also speak of the closed limit of a sequence (f∗n)n
of cliff functions.

A.1.4 Constructing an Iteration Group

Returning to the proof of Theorem 1, take a path stationary preference relation ⪰
on H with a representation (U,φ, I). Let A ∈ ∪tFt be an essential event and w.l.o.g.
assume that A ∈ F1. Let H(A) be the subset of acts h ∈ H that are {A,Ac}-adapted
and let U ○H(A) ∶= {U ○h ∶ h ∈ H(A)} be the set of random variables U ○h generated
by such acts. Think of U ○ H(A) as a subset of R2 and of I as a function on that
subset. Let C ∶= {U(z, d) ∶ d ∈ X∞} and note that C is a closed interval in R
with nonempty interior C○. By SI and FC, I is a strictly increasing and continuous
function on C2.

We want to apply Theorem 4.16 in Lundberg [25] to find an iteration group
{gα ∶ α ∈ (−λ,λ)} over C○ such that

gαI(k, k′) = I(gα(k), gα(k′)), ∀α ∈ (−λ,λ),∀k, k′ ∈ C○. (A.4)

The sufficient condition given in Lundberg [25] is that there is a sequence of real-
valued functions gn whose domains Dom gn are contained in C and such that i) an
analogue of (A.4) holds for the functions gn, ii) gn ≠ j, iii) Dom gn →L C, and iv)
gn →L j.16

To that end, let (xn)n be a sequence in X satisfying property (5) in Lemma 7. For
every k ∈ C and n ∈ N, let fn(k) ∶= φ(xn, k). Also, let f(k) ∶= φ(z, k), k ∈ C. By the

16This is the technical restriction we mentioned in Section 5.2.
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choice of (xn)n, fn(C) ⊂ C for every n and f(C) ⊂ C. The next lemma shows that
the time aggregator φ is uniformly continuous in its first argument. The technical
proof, which invokes several results from Lundberg [25], can be skipped without loss
of continuity.

Lemma 8 fn →L f .

Proof. Because ⪰ is continuous, (fn)n converges pointwise to f . To prove the
stronger form of convergence, identify each function fn with an increasing cliff func-
tion. By Lundberg [25, Lemma 1.1], there is a subsequence (fnm)m and a cliff function
f∗ such that fnm →L f∗. We wish to show that f∗ = f so that, in particular, f∗ is a
proper function. By Lemma 5, we know that φ and I permute, which implies that

fnmI(k, k′) = I(fnm(k), fnm(k′)) ∀m ∈ N,∀k, k′ ∈ C. (A.5)

It follows from Lundberg [25, Lemma 4.8] that

f∗(I(k, k′)) = {I(l, l′) ∶ l ∈ f∗(k), l′ ∈ f∗(k′)} ∀k, k′ ∈ C, (A.6)

and from Lundberg [25, Lemma 4.7] that f∗ is a proper function. Finally, it follows
from Lundberg [25, Lemma 1.2] that (fnm)m converges to f∗ uniformly on all compact
subsets A of the interior of C. But then, f∗(k) = f(k) for all k ∈ C○ and, since f, f∗

are both continuous functions, that f = f∗. Since the convergent subsequence (fnm)m
was arbitrary, we are done.

For every n, let gn ∶= f−1 ○fn. By construction, an analogue of (A.4) holds for the
functions gn. By the choice of xn, gn ≠ j. From Lemma 8 and Lundberg [24, Thm
5.3], deduce that gn →L j and, from Lundberg [24, Lemma 3.9], that Dom gn →L C.
Thus, we can apply Lundberg [25, Theorem 4.16] and deduce that the sequence
(gn)n generates the sought-after iteration group {gα ∶ α ∈ (−λ,λ)} over C○, where by
generating we mean that for every α ∈ (−λ,λ) there is a sequence (pn)n of integers
such that gpnn →L gα

The next lemma shows that an analogue of (A.4) continues to hold when I is
viewed as a function of any C○-valued random variable ξ ∈ B0, not only the binary
ones.

Lemma 9 I(gα ○ ξ) = gαI(ξ) for all α ∈ (−λ,λ) and ξ ∈ B0
C○.

Proof. Because I and φ permute, we know that I(gmn ○ξ) = gmn I(ξ) for all n ∈ N,m ∈
Z, and ξ ∈ B0

C○ . Fix ξ ∈ B0
C○ and α ∈ (−λ,λ), and let F ′ be a finite algebra on Ω

such that ξ is F ′-measurable. Because the sequence (gn)n generates the iteration
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group {gα}, for every α there is a sequence (pn)n of integers such that gα is the
closed limit of the sequences (gpnn )n. Moreover, gα ○ ξ and each function gpnn ○ ξ are
F ′-measurable. The desired equality follows since I is finite-continuous and each
function gpnn is continuous.

A.1.5 Constructing an Abel Function

The next step is to find a nonempty open interval O ⊂ C0 on which the iteration
group {gα ∶ α ∈ (−λ,λ)} is fixed point free. The key is Theorem 4.13 in Lundberg
[25] which shows that if an equation like (A.4) holds, then each gα, α ≠ 0, has at most
one fixed point.

Lemma 10 There exists a nonempty, open interval O ⊂ C○ such that none of the
functions gα∣O, α ≠ 0, has a fixed point.

Proof. Let Cα ⊂ C be the domain of the function gα. By Lundberg [25, Theorem
4.13], each function gα, α ≠ 0, has at most one fixed point. If none of the functions
gα, α ≠ 0, has a fixed point, we can let O = C○. Suppose instead that for some α∗ ≠ 0,
the function gα

∗

has a fixed point kα
∗ ∈ C○. Because Cα∗ is an interval, there is ε > 0

such that either (kα∗ − ε, kα∗) ⊂ Cα or (kα∗ , kα∗ + ε) ⊂ Cα. Suppose the latter is true.
An analogous argument applies to the other case. It is enough to show that there is
ε′ ∈ (0, ε) such that no function gα, α ≠ 0, has a fixed point when restricted to the
interval (kα∗ , kα∗ + ε′). If not, we can find a sequence (αn)n, αn ≠ 0, such that each
function gαn has a fixed point kαn and kαn ↘ kα

∗

. But then, kαn ∈ Cα∗ for all n large
enough. From the properties of an iteration group, see Section A.1.3, we know that
if some gα, α ≠ 0, has a fixed point kα, then kα is a fixed point of all other functions
gα
′

that are defined at kα. Conclude that gα
∗

has countably many fixed points, kα
∗

and kαn for all n large enough, contradicting the fact that gα
∗

has a unique fixed
point.

As observed in Section A.1.3, the iteration group {gα ∶ α ∈ (−λ,λ)} over C○

induces an iteration group {gα∣O ∶ α ∈ (−λ̂, λ̂)} over O. Since the latter group is fixed
point free, it has an Abel function L ∶ O → R. As was further explained in Section
A.1.3, it is w.l.o.g. to assume that L is strictly increasing. We summarize these
observations in the next lemma.

Lemma 11 The iteration group {gα∣O ∶ α ∈ (−λ̂, λ̂)} has an Abel function L ∶ O → R
which is strictly increasing.
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A.1.6 A Local Abel Function is Enough

We plan to use the Abel function L to monotonically transform the representation
(U,φ, I) into a new, more tractable representation. The problem is that L is defined
only on a subinterval O of the range U(X∞) of all possible utility levels. To address
this problem, the next lemma uses Path Stationarity to “scale down” the represen-
tation (U,φ, I) into another representation whose utility levels are contained in O.
Moreover, this is done without changing the certainty equivalent I, thus preserving
the connection between I, the iteration group {gα}, and the Abel function L, estab-
lished in Lemmas 9 and 11. The lemma formalizes a key step of the proof discussed
in Section 5.2.

Lemma 12 ⪰ has a representation (Û , φ̂, Î) such that Û(X∞) =∶ D ⊂ O and Î is
equal to the restriction of I to B0

D.

Proof. Since U ∶ X∞ → R is continuous and X is connected, we know that
{U(x,x, ...) ∶ x ∈ X} is connected. It follows from property (3) in Lemma 7, that
{U(x,x, ...) ∶ x ∈X} = U(X∞). Thus, we can find x0 ∈X such that U(x0, x0, ...) ∈ O.
Let f0(k) ∶= φ(x0, k) for all k ∈ U(X∞). Because X is compact, there exists N ∈ N
such that fN0 (U(X∞)) ⊂ O. In addition, since f0 is strictly increasing, fN0 is

strictly increasing. Thus, the function Û ∶= fN0 ○ U ∶ X∞ → R represents the re-
striction of ⪰ to X∞ and its range is contained in the set O. Moreover, if we let
φ̂(x, s) ∶= fN0 φ(x, f−N0 (s)) for every x ∈ X,s ∈ Û(X∞), then φ̂ is a time aggregator

for Û . Let Î be the restriction of I to B0
D, where D ∶= Û(X∞) ⊂ O ⊂ C. It remains to

show that (Û , φ̂, Î) is a representation for ⪰. Let xN0 ∈XN be the N -dimensional vec-
tor, each coordinate of which is equal to x0 ∈ X. For all h,h′ ∈ H, Path Stationarity
implies that

h ⪰ h′⇔ (xN0 , h) ⪰ (xN0 , h′) ⇔ I(fN0 ○U ○ h) ≥ I(fN0 ○U ○ h′) ⇔ I(Û ○ h) ≥ I(Û ○ h′),

completing the proof. .

A.1.7 A Monotone Transformation of Utility

As noted in Section A.1.3, if L is an Abel function for some iteration group, then
so is the function L + c where c is an arbitrary real number. Hence, we can assume
that 0 ∈ L(D)○. Note that L(D)○ is nonempty since D○ = [Û(X∞)]○ is nonempty
and L is strictly increasing. Now, use L to construct a monotone transformation of
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the representation (Û , φ̂, Î):

Ũ ∶= L ○ Û ,
φ̃(x, s) ∶= Lφ̂(x,L−1(s)) ∀x ∈X,s ∈ L(D),
Ĩ(ξ) ∶= LI(L−1 ○ ξ) ∀ξ ∈ B0

L(D).

By construction, (Ũ , φ̃, Ĩ) is a representation of ⪰. The next lemma shows that the
certainty equivalent Ĩ ∶ B0

L(D) → R is translation-invariant.

Lemma 13 Ĩ(ξ +α) = Ĩ(ξ) +α for all ξ ∈ B0
L(D), α ∈ (−λ̂, λ̂) such that ξ +α ∈ B0

L(D).

Proof. Take ξ and α as in the statement of the lemma. Let ξ′ ∈ B0
D be such that

L ○ ξ′ = ξ. Then,

Ĩ(ξ + α) = LI[L−1 ○ (L ○ ξ′ + α)] = LI[gα ○ ξ′] = LgαI(ξ′) = L(I(ξ′)) + α
= LI[L−1 ○ ξ] + α = Ĩ(ξ) + α.

The first equality follows from the definitions of Ĩ and ξ′, and the fact that Î is
the restriction of I to B0

D. The second equality follows since L is an Abel function

for the group {gα∣O ∶ α ∈ (−λ̂, λ̂)} and D ⊂ O. The third equality follows because,
by Lemma 9, I and gα permute. The fourth equality uses again the fact that L is
an Abel function. The final two equalities follow from the definitions of ξ′ and Ĩ
respectively.

A.1.8 A Functional Equation

In this section, we use the translation invariance of Ĩ to deduce a functional equation
which is solved in Lundberg [26]. Once again, think of I as a function on C2 ⊂ R2.
Analogously, Ĩ becomes a function on L(D)2. Write [c, c′] for the closed interval
L(D) and define

ψ(k) ∶=
⎧⎪⎪⎨⎪⎪⎩

Ĩ(c, c + k) − c if k ∈ [0, c′ − c]
Ĩ(c′, c′ + k) − c′ if k ∈ [c − c′,0]

Lemma 14 The function ψ is continuous and strictly increasing; ψ(0) = 0; ψ(k) < k
for all k > 0, while ψ(k) > k for all k < 0. Finally, the function k ↦ ψ(k)−k is strictly
decreasing.
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Proof. ψ is continuous and strictly increasing since Ĩ is continuous and strictly
increasing. Since Ĩ(k, k) = k for all k ∈ [c, c′], ψ(0) = 0. To see that k ↦ ψ(k) − k is
a strictly decreasing function, pick k ∈ [0, c′ − c) and ε > 0 such that k + ε ∈ [0, c′ − c].
Then,

ψ(k + ε) − ψ(k) − ε = Ĩ(c, c + k + ε) − Ĩ(c + ε, c + k + ε) < 0.

Conclude that ψ(k) − k is strictly decreasing on [0, c′ − c]. A similar argument for
k ∈ [c − c′,0] shows that ψ(k) − k is strictly decreasing on its entire domain.

Since, by Lemma 13, Ĩ is translation-invariant,

Ĩ(s, t) = s + ψ(t − s) ∀s, t ∈ [c, c′]. (A.7)

For every x ∈X, write f̃x for the function φ̃(x, ⋅) on [c, c′]. Using (A.7), the fact that
Ĩ and φ̃ permute implies that

f̃x(s + ψ(t − s)) = f̃x(s) + ψ(f̃x(t) − f̃x(s)) ∀x ∈X,s, t ∈ [c, c′]. (A.8)

The above is a special case of the functional equation

g(s + ψ(t − s)) = g(s) + ψ(g(t) − g(s)) ∀s, t ∈ [c, c′], (A.9)

which is solved in Lundberg [26] when the function g is continuous and strictly
increasing and ψ has the properties listed in Lemma 14. Thinking of ψ as a known
function and of g as a solution to (A.9), we break the remainder of the proof in two
cases, depending on whether there is a solution g that is affine on some subinterval
of its domain.

A.1.9 The Affine Case

Suppose that (A.9) is satisfied for some g that is affine on a subinterval of [c, c′]. It
follows from Lundberg [26, Thm 10.1,10.3] that all solutions g of (A.9) are affine on
[c, c′]. In particular,

f̃x(k) = u(x) + b(x)k ∀x ∈X,k ∈ [c, c′]. (A.10)

Because (Ũ , φ̃, Ĩ) is a representation for ⪰ and ⪰ is continuous on X∞, it follows that
u, b ∶ X → R are continuous functions. Since each function f̃x is strictly increasing,
we know that b(x) > 0. In addition, property (2) in Lemma 7 implies that b(x) < 1
for all x ∈X. Thus, Ũ ∶X∞ → R is an Uzawa-Epstein utility.
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Turn to the certainty equivalent Ĩ ∶ B0
L(D) → R. By Lemma 13, we know that

Ĩ is translation invariant. The next lemma shows that Ĩ is b(x)-homogeneous for
all x ∈ X. To state the lemma, note that if ξ ∈ B0

L(D), then b(x)ξ ∈ B0
L(D). This is

because 0 ∈ L(D)○ and b(x) ∈ (0,1).

Lemma 15 Ĩ(b(x)ξ) = b(x)Ĩ(ξ) for all x ∈X,ξ ∈ B0
L(D).

Proof. Since 0 ∈ L(D)○, we can find x0 ∈ X such that u(x0) = 0. Let β ∶= b(x0) ∈
(0,1). The fact that Ĩ and φ̃ permute implies that

Ĩ[u(x) + b(x)ξ] = u(x) + b(x)Ĩ(ξ) ∀x ∈X,ξ ∈ B0
L(D). (A.11)

Letting x = x0, we obtain Ĩ(βξ) = βĨ(ξ) for all ξ ∈ B0
L(D). In turn, Ĩ(βtξ) = βtĨ(ξ)

for all ξ ∈ B0
L(D), t ∈ N.

Next, fix x ∈ X and ξ ∈ B0
L(D). Choose t large enough so that βtu(x) ∈ (−λ̂, λ̂).

We claim that

βtu(x) + βtb(x)Ĩ(ξ) = Ĩ[βtu(x) + βtb(x)ξ] = βtu(x) + Ĩ[βtb(x)ξ]
= βtu(x) + βtĨ[b(x)ξ].

The first equality follows from (A.11); the second because Ĩ is translation-invariant;
the final equality follows because, as we showed earlier in this proof, Ĩ is β-homogeneous.

Lemma 16 Ĩ ∶ B0
L(D) → R can be extended to a certainty equivalent Ĩe ∶ B0 → R

which is translation-invariant and b(x)-homogeneous for all x ∈X.

Proof. For every ξ ∈ B0, pick t ∈ N large enough so that βtξ ∈ B0
L(D) and let

Ĩe(ξ) ∶= β−tĨ(βtξ). One can verify, see Kochov [17, Lemma 11], that Ĩe is well-
defined and extends Ĩ. To show that Ĩe is translation-invariant, take any ξ ∈ B0 and
any α ∈ R. Choose t large enough so that βtξ, βt(ξ + α) ∈ B0

L(D) and βtα ∈ (−λ̂, λ̂).
Then,

Ĩe(ξ + α) = β−tĨ(βtξ + βtα) = β−t(Ĩ(βtξ) + βtα) = Ĩe(ξ) + α.

Similar arguments show that the extension Ĩe is b(x)-homogeneous for every x ∈ X.
By construction, Ĩe is increasing and normalized. Finally, because Ĩe is translation-
invariant, it is norm-continuous. Thus, Ĩe is a certainty equivalent in the sense of
Section 2.

The next lemma shows that if b ∶X → (0,1) is nonconstant, then Ĩe is positively
homogeneous.
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Lemma 17 If a function J ∶ B0 → R is γ-homogeneous for all γ in some nonempty
open interval (a, b) ⊂ (0,1), then J is positively homogeneous.

Proof. It is clear that J is γ-homogeneous for all γ ∈ (at, bt) and all t ∈ T . Observe
that logb a > 1 and pick k such that 1+ 1

k < logb a. Then, bt+1 > at for all t ≥ k. Conclude
that (0, bk) ⊂ ∪t(at, bt) and, hence, that J is γ-homogeneous for all γ ∈ (0, bk). Next
pick any γ > 0 and ξ ∈ B0. Choose β ∈ (0, bk) and t large enough so that βtγ ∈ (0, bk).
Because βt ∈ (0, bk), J is βt-homogeneous. Hence, J(βtγξ) = βtJ(γξ). Because J
is βtγ-homogeneous, J(βtγξ) = βtγJ(ξ). The last two equalities prove that J is
γ-homogeneous.

A.1.10 The Non-Affine Case

Suppose now that (A.9) has no solution g that is affine on a subinterval of [c, c′].
It follows from Lundberg [26, Thm. 11.1] that all solutions g and, in particular, all
functions f̃x take the form

f̃x(k) = φ̃(x, k) =
1

p
ln(u(x) + b(x)epk) ∀x ∈X,k ∈ [c, c′], (A.12)

where u, b ∶ X → R, p ∈ R and p ≠ 0. Assume that p > 0 and let H(s) ∶= eps for
every s ∈ R. If p < 0, we can let H(s) ∶= −eps and the subsequent analysis would
carry through in an analogous manner. Let D∗ ∶= [epc, epc′] and define U∗ ∶= H ○ Ũ ,
φ∗(x, k) ∶= Hφ̃(x,H−1(k)), and I∗(ξ) ∶= HĨ(H−1 ○ ξ) for all x ∈ X,k ∈ D∗, ξ ∈ B0

D∗ .
Then,

φ∗(x, k) = u(x) + b(x)k, ∀x ∈X,k ∈D∗. (A.13)

By construction, (U∗, φ∗, I∗) is a representation for ⪰. Once again, the functions
u, b ∶ X → R are continuous and b(x) ∈ (0,1) for every x ∈ X. Thus, U∗ is an
Uzawa-Epstein utility.

Turning attention to the certainty equivalent I∗ ∶ B0
D∗ → R, notice that the open

interval (H(−λ̂),H(λ̂)) contains 1.

Lemma 18 I∗(γξ) = γI∗(ξ) for all γ ∈ (H(−λ̂),H(λ̂)) and ξ ∈ B0
D∗ such that γξ ∈

B0
D∗.

Proof. Let ξ and γ be as in the statement of the lemma. Let ξ′ ∶= H−1 ○ ξ and
α ∶= H−1(γ). Observe that H−1 ○ (γξ) = ξ′ + α. Also, γ′ + α ∈ B0

L(D) and α ∈ (−λ̂, λ̂).
we claim that

I∗(γξ) =HĨ[H−1 ○ (γξ)] =H[Ĩ(ξ′ + α)] =H[Ĩ(ξ′) + α] =H[Ĩ(ξ′)]H(α) = I∗(ξ)γ.
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The first equality follows from the definition of I∗, the second from the definition of
ξ′, the third from the translation invariance of Ĩ (Lemma 13), the fourth equality
from the fact that H is an exponential function, and the final equality from the
definition of I∗.

Because γ is restricted to lie in the interval (H(−λ̂),H(λ̂)), one can think of
Lemma 18 as establishing a type of “local” homogeneity. Similarly, the next lemma
establishes a type of “local” translation invariance.

Lemma 19 For every ξ in the interior of B0
D∗, there is kξ > 0 such that I∗(ξ + k) =

I∗(ξ) + k for all k such that ∣k∣ ≤ kξ.

Proof. Because I∗ and φ∗ permute,

u(x) + b(x)I∗(ξ) = I∗(u(x) + b(x)ξ) ∀x ∈X,ξ ∈ B0
D∗ . (A.14)

Fix some ξ in the interior of B0
D∗ . For every x,x′ ∈X, define

ξ′ = u(x
′) − u(x)
b(x) + b(x

′)
b(x) ξ.

Note that if x′ is sufficiently close to x, then ξ′ ∈ B0
D∗ . Using (A.14), deduce that

I∗(ξ) = u(x) − u(x
′)

b(x′) + b(x)
b(x′)I

∗(u(x
′) − u(x)
b(x) + b(x

′)
b(x) ξ).

Moreover, if x′ is sufficiently close to x, we can apply Lemma 18 and deduce that

I∗(ξ) = u(x) − u(x
′)

b(x′) + I∗(u(x
′) − u(x)
b(x′) + ξ).

If u ∶X → R is a nonconstant function, then the above equality completes the proof.
Suppose then that u ∶X → R is constant. Because U∗ ∶X∞ → R cannot be constant,
it follows that b ∶ X → (0,1) cannot be constant either. Moreover, from (A.14) we
can deduce that

u(x) + b(x)u(x) + b2(x)I∗(ξ) = I∗(u(x) + b(x)u(x) + b2(x)ξ) ∀x ∈X,ξ ∈ B0
D∗ .

Letting v(x) ∶= u(x) + b(x)u(x) and c(x) ∶= b2(x), we see that

v(x) + c(x)I∗(ξ) = I∗(v(x) + c(x)ξ) ∀x ∈X,ξ ∈ B0
D∗ .

Since by construction v is not constant, the proof reduces to the case when u is not
constant.

Lemmas 20 and 21 below show that the local properties established by Lemmas
19 and 18 integrate into global properties.
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Lemma 20 I∗(ξ + k) = I∗(ξ) + k for all ξ ∈ B0
D∗ and k ∈ R such that ξ + k ∈ B0

D∗.

Proof. Fix some ξ in the interior of B0
D∗ and some k > 0 such that ξ + k ∈ B0

D∗ .
Analogous arguments apply when k < 0. Let k∗ ≥ 0 be the largest k′ such that
I∗(ξ + k′′) = I∗(ξ) + k′′ for all k′′ ∈ [0, k′]. By Lemma 19, k∗ > 0. If k ≤ k∗, we
are done. Suppose k > k∗ and, by way of contradiction, that I∗(ξ + k) ≠ I∗(ξ) + k.
Because k > k∗, ξ′ ∶= ξ + k∗ is in the interior of B0

D∗ . By Lemma 19, there is k∗∗ > 0
such that I∗(ξ′ + k′) = I∗(ξ′) + k′ for all k′ ∈ [0, k∗∗]. But then, for all such k′,

I∗(ξ + k∗ + k′) = I∗(ξ + k∗) + k′ = I∗(ξ) + k∗ + k′,

contradicting the definition of k∗.
The proof of the next lemma is analogous and omitted.

Lemma 21 I∗(γξ) = γI∗(ξ) for all γ ≥ 0 and ξ ∈ B0
D∗ such that γξ ∈ B0

D∗.

We need one more property of I∗.

Lemma 22 I∗(αξ + (1 − α)k) = αI∗(ξ) + (1 − α)k for all α ∈ [0,1], ξ ∈ B0
D∗ , k ∈D∗.

Proof. Suppose ξ is in the interior of B0
D∗ . For all α ∈ [0,1] sufficiently close

to 1, αξ ∈ B0
D∗ . By the translation invariance of I∗ (Lemma 20) and the positive

homogeneity of I∗ (Lemma 21),

I∗(αξ + (1 − α)k) = I∗(αξ) + (1 − α)k = αI(ξ) + (1 − α)k.

Arguments analogous to those in Lemma 20 show that the desired property holds
for all α ∈ [0,1].

Lemma 23 I∗ ∶ B0
D∗ → R can be uniquely extended to a translation-invariant and

positively homogeneous certainty equivalent I∗e ∶ B0 → R.

Proof. Fix some k in the interior of D∗. For every ξ ∈ B0, there exists α ∈ (0,1)
such that αξ + (1 − α)k ∈ B0

D∗ . Let

I∗e(ξ) ∶= 1

α
I∗(αξ + (1 − α)k) − 1 − α

α
k.

To see that I∗e is well-defined, take α1 > α2 such that

ξ1 ∶= α1ξ + (1 − α1)k ∈ B0
D∗ and ξ2 ∶= α2ξ + (1 − α2)k ∈ B0

D∗ .
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By construction, ξ2 = α2

α1
ξ1 + (1 − α2

α1
)k. By Lemma 22, I∗(ξ2) = α2

α1
I(ξ1) + (1 − α2

α1
)k,

which is equivalent to

1

α1

I∗(ξ1) −
1 − α1

α1

k = 1

α2

I∗(ξ2) −
1 − α2

α2

k.

Thus, I∗e is well-defined. Messy but simple calculations show that I∗e is translation-
invariant. Appealing to Lemma 22, one can then show that I∗e is positively homo-
geneous. By construction, I∗e is increasing and normalized. Finally, I∗e is norm-
continuous because it is increasing and translation-invariant. Thus, I∗e is a certainty
equivalent in the sense of Section 2.

A.2 Proof of Theorem 2

By Lemma 7, there is z ∈X such that (z, z, ...) attains the minimum of U ∶X∞ → R.
It is w.l.o.g. to assume that u(z) = 0. Let f ∶ U(X∞) → Û(X∞) be the function
such that f(U(d)) ∶= Û(d) for every d ∈ X∞. Because U and Û represent the same
preference relation on X∞, f is well defined and strictly increasing. Because Û is
continuous and X∞ is connected, the set Û(X∞) = f(U(X∞)) ⊂ R is connected.
Hence, f is continuous. Next, we want to show that f is differentiable at each point
in the interior of its domain. For every x ∈ X, s ∈ U(X∞)○, and k ∈ R small enough,
we have, by construction,

f[u(x) + b(x)(s + k)] − f[u(x) + b(x)s]
b(x)k = b̂(x)

b(x)
f(s + k) − f(s)

k
. (A.15)

Thus, if f is differentiable at s ∈ U(X∞)○, then f is differentiable at every point in
the set

A(s) ∶= {u(x) + b(x)s ∶ x ∈X}.

Let E be the set of all points s ∈ U(X∞)○ at which f is differentiable. Each set
A(s), s ∈ E, is an interval because X is connected and u, b ∶ X → R are continuous
functions. In addition, we know that for every k ∈ U(X∞), there is x ∈ X such that
U(x,x, ....) = k. It follows that s ∈ A(s) for every s ∈ E. Fix s ∈ E and, for every
n ∈ N, let sn ∶= b(z)ns. Since u(z) = 0, sn ∈ A(s) for every n. Thus, f is differentiable
at every sn. Also,

sn+1 ∈ A(sn+1) ∩A(sn) ∀n. (A.16)
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Conclude that the set ∪nA(sn) is connected and, since sn →n 0, that (0, s] ⊂ ∪nA(sn).
Thus, if f is differentiable at some s ∈ U(X∞)○, then f is differentiable at each point
in (0, s]. Because f is increasing, the set of points at which f is not differentiable
has outer measure zero. See, e.g., Royden [29, Thm 3, p.100]). Hence, for every
s′ ∈ U(X∞)○, there is s ∈ E such that s > s′ > 0 and so, f is differentiable in the
interior of its domain.

Next, deduce from (A.15) that

b(x)f ′[u(x) + b(x)s] = b̂(x)f ′(s) ∀x ∈X,s ∈ U(X∞)○. (A.17)

We want to show that the derivative f ′ is never 0. By way of contradiction, suppose
f ′(s) = 0 for some s ∈ U(X∞)○. Since b(x), b̂(x) > 0 for all x ∈ X, it follows from
(A.17) that

f ′[u(x) + b(x)s] = 0 ∀x ∈X.

Conclude that f ′(s′) = 0 for all s′ ∈ A(s), contradicting the fact that f is strictly
increasing.

The next step is to show that b = b̂. Take some x ∈ X such that s ∶= u(x)(1 −
b(x))−1 ∈ U(X∞)○. Plugging x and s into (A.17) gives

b(x)f ′(s) = b̂(x)f ′(s).

Since f ′(s) ≠ 0, we are done.
The final step is to show that f is affine. Since b = b̂, (A.17) becomes

f ′[u(x) + b(x)s] = f ′(s) ∀x ∈X,∀s ∈ U(X∞)○. (A.18)

Fix some s ∈ U(X∞)○ and once again let sn ∶= b(z)ns. It follows from (A.18) that
f ′ is constant on each interval A(sn). Since A(sn) ∩ A(sn+1) ≠ ∅ for every n and
(0, s] ⊂ ∪nA(sn), f ′ is constant on (0, s]. Since s was arbitrary, f is affine on U(X∞)○
and, by continuity, on U(X∞).

A.3 Proof of Theorem 4

Let Hrp be the set of all rp-acts h ∈ H.

Lemma 24 U ○ Hrp is dense in U ○ H.
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Proof. Take some act h ∈ H. Since h is finite, there is some t ∈ T and a finite partition
Π ∶= {A1, ...,An} ⊂ Ft such that h is Π-adapted. Fix some ωi from each set Ai and
write (xi0, xi1, ...) for h(ωi) ∈ X∞. For every k ∈ T and every i, let aki ∶= (xi0, ..., xik).
Let bk1 ∶= (ak1, ak2, ...., akn), bk2 ∶= (ak2, ak3, ...., ak1),..., and bkn ∶= (akn, ak1, ..., akn−1). Let hk be
the Π-adapted act such that hk(ω) = (bki , bki , ...) for all ω ∈ Ai and i. Observe that
hk ∈ Hrp and hk →k h.

Given t ∈ T , write a for a list (x0, x1, ..., xt−1) ∈X t of outcomes as well as for a list
(f0, ..., ft−1) of functions from Ω into X. Then, every act h ∈ Hrp can be written as
a sequence (a, a, ...) for some list a = (f0, f1, ..., ft−1) of functions such that for every
ω,ω′ ∈ Ω, the lists

(f0(ω), f1(ω), ..., ft−1(ω)) ∈X t and (f0(ω′), f1(ω′), ..., ft−1(ω′)) ∈X t

are permutations of one another. Given a function b ∶X → (0,1), it follows that

Πt−1
k=0 b(fk(ω)) = Πt−1

k=0 b(fk(ω′)) ∀ω,ω′ ∈ Ω.

Given the rp-act h = (a, a, ...), we can thus let

b(a) ∶= Πt−1
k=0b(fk(ω)) (A.19)

and be certain that b(a) is a number in (0,1) independent of ω ∈ Ω.
Next, suppose ⪰ is a path stationary preference relation on H with a representa-

tion (u, b, I) and let h, g,m ∈ H be as in the statement of IH-T. Since h is an rp-act,
h = (a, a, ...) for some list a of functions. Defining b(a) as in (A.19), observe that

U ○m = (1 − b(a))[U ○ h] + b(a)[U ○ g].

Moreover, IH-T becomes equivalent to the implication:

I[U ○ h] ≥ I[U ○ g] ⇒ I((1 − b(a))[U ○ h] + b(a)[U ○ g]) ≥ I[U ○ g]. (A.20)

On its own, (A.20) is strictly weaker than quasiconcavity since U ○ h is restricted to
lie in the set U ○Hrp and since the mixing weight b(a) is a function of h. Our strategy
is to show that the set U ○Hrp is sufficiently rich for (A.20) to imply quasiconcavity.
From Lemma 24, we already know that U ○ Hrp is dense in U ○ H. The bulk of the
remaining proof is to show that U ○ Hrp (or some transformation thereof) contains
an open set O.

Lemma 25 For every rp-act (a, a, ...) ∈ Hrp and x ∈ X, if (a, a, ...) ∼ (x,x, ...), then
(a, x, a, x, ...) ∼ (x,x, ...).
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Proof. Let h ∶= (a, x, a, x, ...). First, we are going to show that h ⪰ (x,x, ...). By
PS, (x, a, a, a, ...) ∼ (x,x, ...) ∼ (a, a, ...). By IH-T, (a, x, a, a, a, ...) ⪰ (a, a, ...). By PS
again,

(x, a, x, a, a, a, ...) ⪰ (x, a, a, ...) ∼ (a, a, ...).

By IH-T again, (a, x, a, x, a, a, a, ...) ⪰ (a, a, ...). Iterating the argument and using
the continuity of ⪰ shows that h ⪰ (x,x, ...). Next, suppose by way of contradiction
that h ≻ (x,x, ...) so that h ≻ (x,h) ≻ (x,x, ...). Note that (x,h) = (x, a, x, a, ...) is an
rp-act. By IH-T, we conclude that (x, a, h) ⪰ (x,h). By PS, (a, h) ⪰ h and, hence,
(a, h) ≻ (x,x, ...). The latter implies that (a, h) ≻ (x, a, h). To summarize, we have

(a, h) ≻ (x, a, h) ⪰ (x,h) = (x, a, x, a, ...).

By IH-T again, (x, a, a, h) ⪰ (x,h). By PS, (a, a, h) ⪰ h. Similarly, (a, a, a, h) ⪰ h.
Iterating the argument and using the fact that ⪰ is continuous, we deduce that
(a, a, ...) ⪰ h. Altogether, we have

(a, a, ...) ⪰ h ≻ (x,x, ...) ∼ (a, a, ...),

a contradiction.
Next, let Π ⊂ ∪tFt be a finite partition of Ω. To complete the proof of Theorem

4, it is enough to show that I is positively homogeneous and quasiconcave when I is
restricted to the space of Π-measurable functions in B0. Based on PS, it is w.l.o.g.
to assume that Π ⊂ F1. To simplify the exposition, we also assume that Π contains
three sets so that Π = {A1,A2,A3}. The arguments extend naturally to all finite
partitions Π.

Assume that utility is normalized so that 0 ∈ u(X)○. Let x0 ∈ X be such that
u(x0) = 0 and let β ∶= b(x0). Fix some (y0, y1, y2) ∈X3 and consider the Π-measurable
functions f0, f1, ..., f11 from Ω into X defined as

f3 ∶ x0 x0 y0 f7 ∶ y1 x0 x0 f11 ∶ x0 y2 x0
f2 ∶ x0 y0 x0 f6 ∶ x0 x0 y1 f10 ∶ y2 x0 x0
f1 ∶ y0 x0 x0 f5 ∶ x0 y1 x0 f9 ∶ x0 x0 y2
f0 ∶ x0 x0 x0 f4 ∶ x0 x0 x0 f8 ∶ x0 x0 x0

− − − − − − − − −
A1 A2 A3 A1 A2 A3 A1 A2 A3
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Let

a ∶= (f0, f1, ..., f11)
h ∶= (a, a, ...)
h′ ∶= (a, x0, x0, ...)
b̂(y0, y1, y2) ∶= b(y0)b(y1)b(y2)β9.

Thus defined, h is a rp-act and

U ○ h = 1

1 − b̂(y0, y1, y2)
U ○ h′.

By varying the choice of (y0, y1, y2) ∈ X3, we obtain different acts h = (a, a, ...) and
h′ = (a, x0, x0, ...). Let Hrp3 be the space of all acts h ∈ Hrp obtained in this manner
and let Φ be the function

(y0, y1, y2) ↦ U ○ h′.

Since U ○ h′ ∶ Ω→ R is Π-measurable, we can identify U ○ h′ with a vector in R3 and
Φ with a function from X3 into R3.

Lemma 26 Φ(X3) has nonempty interior in R3. In particular, 0 ∈ Φ(X3)○.

Proof. By construction,

β−1Φ(y0, y1, y2) =
⎡⎢⎢⎢⎢⎢⎣

1 β5b(y0) β7b(y0)b(y1)
β β3b(y0) β8b(y0)b(y1)
β2 β4b(y0) β6b(y0)b(y1)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

u(y0)
u(y1)
u(y2)

⎤⎥⎥⎥⎥⎥⎦
.

Letting v0 ∶= u(y0), v1 ∶= b(y0)u(y1) and v2 ∶= b(y0)b(y1)u(y2), we can rewrite the
above expression as

β−1Φ(y0, y1, y2) =
⎡⎢⎢⎢⎢⎢⎣

1 β5 β7

β β3 β8

β2 β4 β6

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

v0
v1
v2

⎤⎥⎥⎥⎥⎥⎦
Since the 3 × 3 matrix in the last expression has full rank, the linear mapping

L(ṽ0, ṽ1, ṽ2) ∶=
⎡⎢⎢⎢⎢⎢⎣

1 β5 β7

β β3 β8

β2 β4 β6

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ṽ0
ṽ1
ṽ2

⎤⎥⎥⎥⎥⎥⎦
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from R3 into R3 maps open sets into open sets. Now, consider the set

C ∶= {(u(y0), b(y0)u(y1), b(y0)b(y1)u(y2)) ∶ (y0, y1, y2) ∈X3}

Let b ∶= minx∈X b(X) ∈ (0,1), which is well defined since b ∶ X → (0,1) is continuous
and X is compact. Let B0 ∶= u(X),B1 ∶= bu(X), and B2 ∶= b2u(X). Note that
B0 × B1 × B2 is a rectangle in R3 with nonempty interior. We wish to show that
B0 × B1 × B2 ⊂ C. Take any (v0, v1, v2) ∈ B0 × B1 × B2. Let y0 ∈ X be such that
u(y0) = v0. Recall that utility is normalized so that 0 ∈ u(X)○. Thus, by construction,

v1 ∈ B1 = bu(X) ⊂ b(y0)u(X),

which means that we can find y1 ∈X such that v1 = b(y0)u(y1). Similarly,

v2 ∈ B2 = b2u(X) ⊂ b(y0)b(y1)u(X).

Hence, we can find y2 ∈X such that v2 = b(y0)b(y1)u(y2). Conclude that B0×B1×B2 ⊂
C. Hence, L(B1 ×B2 ×B3) ⊂ Φ(X3). Since B0 ×B1 ×B2 has nonempty interior and
L maps open sets into open sets, Φ(X3)○ ≠ ∅. By construction, 0 ∈ [B1 ×B2 ×B3]○
and, hence, 0 ∈ Φ(X3)○.

Next, consider the mapping

Γ(y0, y1, y2) ∶=
1

1 − b̂(y0, y1, y2)
Φ(y0, y1, y2).

Note that Γ(X3) = U ○ Hrp3 and recall that we identify U ○ Hrp3 with a subset of R3.
Focus on the restriction of I to R3. The remainder of the proof is broken in two
cases.

Case 1: Suppose b ∶ X → (0,1) is constant so that b(x) = β for every x ∈ X.
Then, Γ = (1 − β12)−1Φ, implying that Γ(X3) has nonempty interior in R3 and
0 ∈ O ∶= Γ(X3)○.

Lemma 27 I is positively homogeneous.

Proof. If not, we can find ξ ∈ O and α ∈ (0,1) such that I(ξ) = 0 but I(αξ) ≠ 0.
Since I is continuous, there is α′ ∈ (α,1] such that I(α′ξ) = 0 and I(α′′ξ) ≠ 0 for all
α′′ ∈ [α,α′). But since α′ξ ∈ O, there is an act h ∈ Hrp3 such that U ○ h ∶= α′ξ. As in
Lemma 25, write h as a sequence (a, a, ...) where a is some finite list of Π-measurable
functions f ∶ Ω → X. Let g1 ∶= (a, x0, a, x0, ...), g2 ∶= (a, a, x0, a, a, x0, ...), and so on.
By construction, the sequence (gn)n converges pointwise to h. For every n, a direct
calculation shows that U ○ gn = αnU ○ h for some αn ∈ (0,1) and αn ↗n 1. Hence,
for n large enough, α′αn ∈ [α,α′] so that I(U ○ gn) ≠ 0. But Lemma 25 implies that
I(U ○ gn) = 0 for every n, a contradiction.
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Lemma 28 I is quasiconcave.

Proof. Suppose not. Since I is positively homogeneous, we can find ξ, ξ′ ∈ O and
γ ∈ (0,1) such that I(ξ) = I(ξ′) = 0 and I(γξ+(1−γ)ξ′) < 0. Since I is continuous, we
can choose the ξ and ξ′ so that the preceding inequality obtains for every γ ∈ (0,1).
Since ξ, ξ′ ∈ O = U ○Hrp3 , there are rp-acts h and h′ such that U ○h = ξ and U ○h′ = ξ′.
IH-T implies that I(γξ + (1 − γ)ξ′) ≥ 0 for some γ ∈ (0,1), a contradiction.

Case 2: Suppose b ∶ X → (0,1) is not constant. By Theorem 1, I is positively
homogeneous. It remains to show that I is quasiconcave.17 If not, there are ξ, ξ′ ∈
U ○ H and γ ∈ (0,1) such that I(ξ) = 0, I(ξ′) > 0 and I(γξ′ + (1 − γ)ξ) < 0. Since
I is continuous, we can assume that the inequality holds for all γ in some interval
(0, γ) ⊂ (0,1). Since I is continuous and U ○ Hrp is dense in U ○ H, we can also
assume that ξ′ ∈ U ○ Hrp. By Lemma 26, the ray S extending from 0 ∈ R3 and
passing through ξ′ intersects the open set Φ(X3)○ ∋ 0. Thus, we can find a sequence
(yn0 , yn1 , yn2 )n such that Φ(yn0 , yn1 , yn2 ) ∈ S for every n and Φ(yn0 , yn1 , yn2 ) →n 0 ∈ R3. Let

ξn ∶=
1

1 − b̂(yn0 , yn1 , yn2 )
Φ(yn0 , yn1 , yn2 )

λn ∶= 1 − b̂(yn0 , yn1 , yn2 )

Since b(X) is a compact subset of (0,1), there is ε > 0 such that λn ∈ [ε,1−ε] ⊂ (0,1)
for each n. Since Φ(yn0 , yn1 , yn2 ) →n 0, it follows that ξn →n 0. By construction, each
ξn lies on the ray through ξ′. Hence, ξn = knξ′ for some kn > 0. Also, kn →n 0. Since
I is positively homogeneous, we know that I(ξn) = knI(ξ′) > 0 = I(ξ). For each n,
there is an act hn ∈ Hrp3 such that U ○ hn = ξn. By IH-T,

0 ≤ I(λnξn + (1 − λn)ξ) = I(λnknξ′ + (1 − λn)ξ) ∀n. (A.21)

Let αn ∶= λnkn
λnkn+(1−λn) . Since I is positively homogeneous, (A.21) implies that

0 ≤ I(αnξ′ + (1 − αn)ξ) ∀n. (A.22)

Recall that kn →n 0, while the sequence (λn)n is bounded away from 1. Thus,
αn →n 0. But then (A.22) contradicts the fact that I(γξ′ + (1 − γ)ξ) < 0 for all γ in
the open interval (0, γ).
17If one could once again show that Γ(X3) has nonempty interior, then Lemma 28 would deliver the
desired result. When b ∶ X → (0,1) is nonconstant however, we have not been able to prove that
the interior of Γ(X3) is nonempty. Hence, we provide a different argument for the quasiconcavity
of I.
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